Clinical Studies

Find lists of Clinical Studies related to Ottobock Products; including Clinical Research Summaries, Bibliographies, and links to Published Research.

Kevin on his C-Leg prosthetic leg.

The truth about microprocessor knees

To help make the best clinical choice, a new study compares the differences between microprocessor knees.

The present study found clear differences in the functional features of stance control as well as swing phase control among the four MPKs investigated.


>>>Download the summary here


The product/device “Supplier” (defined as an O&P practitioner, O&P patient care facility, or DME Supplier) assumes full responsibility for accurate billing of Ottobock products. It is the Supplier’s responsibility to determine medical necessity; ensure coverage criteria is met; and submit appropriate HCPCS codes, modifiers, and charges for services/products delivered. It is also recommended that Supplier’s contact insurance payer(s) for coding and coverage guidance prior to submitting claims. Ottobock Coding Suggestions and Reimbursement Guides are based on reasonable judgment and are not recommended to replace the Supplier’s judgment. These recommendations may be subject to revision based on additional information or alpha-numeric system changes.

Lower Limb Prosthetics Clinical Studies

C-Leg / Compact Microprocessor-Controlled Prosthetic Knees


Summary of the study: "Designs and Performance of Microprocessor-Controlled Knee Joints"

Download (PDF | 555.5 KB)

See for yourself: C-Leg has been the subject of more peer-reviewed, published clinical studies than any other microprocessor knee in history. View the eye-opening comparison.

Download (PDF | 62.7 KB)

C-Leg®: Proven Safety, Energy Efficiency, and Cost Efficacy View a summary of a recent clinical research review, demonstrating the C-Leg’s advantages over other knees.

Download (PDF | 124.2 KB)

C-Leg and Compact Clinical Studies Bibliography:
View a list of the most recent clinical studies for C-Leg and Compact

Download (PDF | 86.6 KB)

C-Leg and Compact Studies Available for Download from the Publisher

  1. Kannenberg A,  Zacharias B, Pröbsting E. Benefits of microprocessor-controlled prosthetic knees to limited community ambulators: Systematic review. JRRD, 2014; 51(10): 1469-1496.
  2. Highsmith MJ, Kahle JT, Shepard NT, Kaufman KR. The effects of the C-Leg knee prosthesis on sensory dependency and falls during sensory organization testing.  Technol Innov,  2014; 1(15): 343-347.
  3. Tofts LJ,  Hamblin N.  C-Leg® improves function and quality of life in an adolescent traumatic trans-femoral amputee -  a case study.  Prosthet Orthot Int,  2014; 38(5): 413-417;  (ISSN 1746-1553); DOI: 10.1177/0309364613502354.
  4. Eberly VJ, Mulroy SJ, Gronley JK, Perry J, Yule WJ, Burnfield JM. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation. Prosthet Orthot Int,  2014; 38(6): 447-55 (ISSN: 1746-1553).
  5. Thiele J, Westebbe B, Bellmann M, Kraft M. Designs and Performance of Microprocessor-Controlled Knee Joints. Biomedizinische Technik/Biomedical Engineering . Nov 2013; 1–13; ISSN (Online) 1862-278X, ISSN (Print) 0013-5585; DOI: 10.1515/bmt-2013-0069.
  6. Highsmith MJ, Kahle JT, Miro RM and Mengelkoch LJ. Ramp descent performance with the C-Leg and interrater reliability of the Hill Assessment Index.  Prosthet Orthot Int, 2013; 37(5): 362-367 (ISSN: 1746-1553) DOI: 10.1177/0309364612470482.
  7. Wolf EJ, Everding VQ, Linberg AL, Czerniecki JM, Gambel JM.  Comparison of the Power Knee and C-Leg during step-up and sit-to-stand tasks.  Gait Posture, Jul 2013; 38(3): 397–402.
  8. William D, Beasley E, Shaw A. Investigation of the quality of life of persons with a transfemoral amputation who use a C-Leg® prosthetic device.  JPO,  2013; 25(3): p 100-109. DOI: 10.1097/JPO.0b013e31829be7bc.
  9. Kaufman KR,  Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees.  Clin Biomech, 2012 Jun; 27(5): 460-465.
  10. Theeven P, et al. Influence of Advanced Prosthetic Knee Joints on Perceived Performance and Everyday Life Activity Level of Low-Functional Persons with a transfemoral Amputation or Knee Disarticulation. J. Rehabil. Med., 2012; 44: 454-461.
  11. Wolf EJ, Everding VQ, Linberg AL, Schnall BL, Czerniecki JM, Gambel JM. Assessment of transfemoral amputees using C-Leg and Power Knee for ascending and descending inclines and steps. JRRD, 2012; 49(6): 831-842.
  12. Wong CK, Benoy S, Blackwell W, Jones S, Rahal R. A comparison of energy expenditure in people with transfemoral amputation using microprocessor and nonmicroprocessor knee prostheses: A systematic review. JPO, 2012; 24(4): 202-208.
  13. Barr JB, Wutzke CJ, Threlkeld AJ: Longitudinal gait analysis of a person with a transfemoral amputation using three different prosthetic knee/foot pairs. Physiother Theor Pract 2012; 28(5): 407-411.
  14. Wong CK, Wilska J, Stern M: Balance, balance confidence, and falls using nonmicroprocessor and microprocessor knee prostheses: a case study after vascular amputation with 12-month follow-up. JPO 2012;24(1): 16-18.
  15. Burnfield JM, Eberly VJ, Gronely JK, Perry J, Yule WJ, Mulroy SJ Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees. Prosthet Orthot Int 2012, 36 (1): 95-104.
  16. Theeven P, et al.  Functional Added Value of Microprocessor-Controlled Prosthetic Knee Joints in Daily Life Performance of Medicare Functional Classification Level-2 Amputees.  JRRD,  2011; 43:906-915.
  17. Highsmith MJ, Kahle JT, Carey SL, Lura DJ, Dubey RV, Csavina KR, Quillen WS: Kinetic asymmetry in transfemoral amputees while performing sit to stand and stand to sit movements. Gait Posture 2011; 34(1): 86-91.
  18. Highsmith MJ, et al.  Safety, Energy Efficiency, and Cost Efficacy of the C-Leg for Transfemoral Amputees: A Review of the Literature. Prosthet Orthot Int, 2010 Dec; 34(4): 362-77; DOI: 10.3109/03093646.2010.520054; Epub 2010 Oct 24.
  19. Mâaref K, Martinet N, Grumillier C, Ghannouchi S, André JM, Paysant J.  Kinematics in the Terminal Swing Phase of Unilateral Transfemoral Amputees: Microprocessor-Controlled Versus Swing-Phase Control Prosthetic Knees. Arch Physl Med Rehabil 2010; 91(6): 919-925.
  20. Theeven P, Hemmen B, Stevens C, Ilmer E, Brink P, Seelen H.  Feasibility of a new concept for measuring ACTUAL functional performance in daily life of transfemoral amputees. J Rehabil Med 2010; 42: 744–751.
  21.  Bellmann M, et al.  Comparative Biomechanical Analysis of Current Microprocessor-Controlled Prosthetic Knee Joints.  Arch Phys Med and Rehabil, 2010; 91(4): 644-52.
  22. Hafner BJ. et al.  Differences in Function and Safety between Medicare Functional Classification Level-2 and -3 Transfemoral Amputees and Influence of Prosthetic Knee Joint Control.  JRRD, 2009; 46(3):417-434.
  23. Blumentritt S, et al. Safety of C-Leg: Biomechanical Tests.  JPO, 2009; 21(1): 2-17.
  24. Berry D, et al.  Perceived Stability, Function and Satisfaction among Transfemoral Amputees using Microprocessor and Non-microprocessor Controlled Prosthetic Knees: A Multicenter Study.  JPO, 2009; 21(1): 32-42.,_Function,_and_Satisfaction.5.aspx
  25. Highsmith MJ, et al. Decreased Heart Rate in a Geriatric Client after Physical Therapy Intervention and Accommodation with the C-Leg.  JPO, 2009; 21(1): 43-47.
  26. Seelen HAM, et al. Costs and Consequences of a Prosthesis with an Electronically Stance and Swing Phase Controlled Knee Joint.  Technol Disabil, 2009; 21: 25–34.
  27. Kahle JT, et al.  Comparison of Non-microprocessor Knee Mechanism versus C-Leg on Prosthesis Evaluation Questionnaire, Stumbles, Falls, Walking Tests, Stair Descent, and Knee Preference. JRRD; 2008; 45 (1): 1-14.
  28. Brodkorb TH, et al.  Cost-effectiveness Of C-Leg Compared with Non-microprocessor Controlled Knees: A Modeling Approach.  Arch Phys Med and Rehabil; 2008; 89(1): 24-30.
  29. Gerzeli S, et al.Cost Utility Analysis of Knee Prosthesis with Complete Microprocessor Control (C-Leg) Compared with Mechanical Technology in Trans-Femoral Amputees.  Eur J Health Econ, 2009; 10: 47-59.
  30. Kaufman KR, et al.  Energy Expenditure and Activity Level of Transfemoral Amputees using Passive Mechanical and Microprocessor-controlled Prosthetic Knees.  Arch Phys Med and Rehabil, 2008; 89(7): 1380-1385.
  31. Kaufman KR, et al.  Gait and Balance of Transfemoral Amputees using Passive Mechanical and Microprocessor-Controlled Prosthetic Knees.  Gait and Posture.  2007; 26: 489-493.
  32. Hafner BJ, et al.  Evaluation of Function, Performance, and Preference as Transfemoral Amputees Transition from Mechanical to Microprocessor Control of the Prosthetic Knee.  Arch Phys Med and Rehabil,  2007; 88(2): 207-17.
  33. Schmalz T, Blumentritt S, Marx B. Biomechanical Analysis of Stair Ambulation in Lower Limb Amputees.  Gait Posture,  2007; 25: 267-278.
  34. Engbretson B, Kott K, Ordway N, Brooks G, Crannell J, Hickernell E, Wheller K. Comparison between the C-Leg Microprocessor-Controlled Prosthetic Knee and Non-Microprocessor Control Prosthetic Knees: A Preliminary Study of Energy Expenditure, Obstacle Course Performance, and Quality Of Life Survey.  POI,  2007; 31(1): 51–61.
  35. Bunce DJ, et al. The Impact of C-Leg on the Physical and Psychological Adjustment to Transfemoral Amputation.  Prosthet Orthot Int, 2007; 19(1): 7-14.

Advanced Orthotics Clinical Studies

Breaking News!

Advanced Reimbursement services.
Ottobock now offers Advanced Reimbursement Assistance for Ottobock Products.
Advanced Reimbursement services.
Quality for life