Pelvic Rotation and Locomotion
Pelvic rotation is a part of normal human locomotion. In fact it is considered one of the six
determinants of gait. Normal human gait has five degrees of pelvic rotation in each
direction, for a total of ten degrees. This allows the individual to initiate forward
progression of the limbs and keep one’s feet correctly in the line of progression, thus
minimizing energy expenditure.

The Otto Bock RGO Hip Joint System permits pelvic rotation and has a unique hands free
unlocking hip feature. The Hip Joint system is fabricated into a custom reciprocating gait
orthosis. Unlike other reciprocating gait orthosis hip joints, the RGO provides pelvic
rotation in addition to flexion and extension. As a result, there is less vertical and
horizontal displacement of the “center of mass” during the gait cycle, which in turn allows
for a smoother and more energy efficient gait pattern.

Reciprocating Gait
The RGO Hip Joint System is used in conjunction with two Knee-Ankle-Foot Orthoses
(KAFOs) to provide a rigid framework so that the patient can use upper body torso
strength to act on the frame to propel each lower extremity forward in a reciprocating
pattern. The RGO Hip Joint System uses a single push/pull cable to create the
reciprocating gait motion. The system operates such that when one lower extremity moves
backward, the contra lateral limb is pushed forward via the cable system. This movement
results in a reciprocating gait pattern.
Ottobock RGO Hip Joint System

Coding Justification
January 1, 2015

Stand to Sit
The RGO Hip Joint System also has a unique unlocking mechanism that allows patients to preposition themselves in front of a chair, and frees their hands to allow for safer and easier sitting. This is accomplished through a two-step process: pushing a button to engage the unlocking system, then squaring their body in front of a chair and with a slight hip extension moment, releasing the mechanism hip lock. As an added safety feature, the unlocking system will not engage unless both hip joints are in complete alignment.

Accommodates Patient Growth
The tubular metal pelvic band on the RGO Hip Joint System is all that needs to be replaced to accommodate patient growth, saving the additional cost of replacing the hip joint as well as associated labor. The RGO Hip Joint System comes with special hip joints, vertical uprights, and a thoracic belt, and is attached to a custom RGO/HKAFO system.

HCPCS Coding
None of the current HCPCS codes adequately describe or take into consideration pelvic rotation. This function was not available when the reciprocating hip orthosis codes (L2627 and L2628) were issued. The pelvic control called out in L2627 and L2628 refers to support (control) of the pelvis. In other words, the individual’s hip joint cannot support itself; therefore, control is required to keep the body upright within the orthosis superstructure. This control, which keeps the hip extended, is needed when there is a compromise to the musculature around the hip joint.

The pelvic rotation provided by the RGO Hip Joint System is “in addition” to the pelvic control described in the codes. In the absence of an existing code, miscellaneous code, L2999, is available to use as an add-on code to describe the pelvic rotation feature provided by the RGO Hip Joint System.

The product/device “Supplier” (defined as an O&P practitioner, O&P patient care facility, or DME supplier) assumes full responsibility for accurate billing of Ottobock products. It is the Supplier’s responsibility to determine medical necessity; ensure coverage criteria is met; and submit appropriate HCPCS codes, modifiers, and charges for services/products delivered. It is also recommended that Supplier’s contact insurance payer(s) for coding and coverage guidance prior to submitting claims. Ottobock Coding Suggestions and Reimbursement Guides are based on reasonable judgment and are not recommended to replace the Supplier’s judgment. These recommendations may be subject to revision based on additional information or alpha-numeric system changes.