

Evidence Essentials

C-Brace Microprocessor Stance and Swing Control Orthosis

	Mobility need or deficit of the patient	Evidence for benefits of the <i>C-Brace</i> vs. locked KAFO and SCO		
Safety	Patient stumbles and falls repeatedly	- Significant improvement in balance (Berg Balance Scale) compared to locked KAFO and SCO		
		(Ruetz et al., 2023; Deems-Dluhy et al., 2021; Deems-Dluhy et al., 2017)		
		- Up to 78% reduction in falls		
		(Ruetz et al., 2023; Deems-Dluhy et al., 2021; Deems-Dluhy et al., 2017)		
		- Significant reduction in risk of falling (Activity Specific		
		Balance Confidence Scale)		
		(Ruetz et al., 2023)		
		- Significant reduction in fear of falling, 33% reduction		
		indoors and 59% outdoors		
		(Ruetz et al., 2023)		
		- More than 50% reduction in the number of subjects falling		
		more than once		
		(Ruetz et al., 2023)		
		- Nearly physiologic knee swing flexion (important for		
		sufficient toe clearance)		
		(Schmalz et al. 2016)		
		- Reduction in walking aids		
		(Schmalz et al., 2016; Hobusch et al., 2018)		

ΝЛ	\sim	21	
IVI	u	ום	 .v

Patient feels limited or restricted in his/her mobility by current locked KAFO or SCO

Significant improvement in self-selected walking speed and walking capability (distance walked in the 6 min walk

(Deems-Dluhy et al., 2021; Hobusch et al., 2018)

- Significant improvement in Functional Gait Assessment (FGA) and Dynamic Gait Index (DGI) compared to locked **KAFO** and **SCO**

(Ruetz et al., 2023 [DGI]; Deems-Dluhy et al., 2021; Deems-Dluhy et al., 2017 [FGA])

		 Significant improvement in patient-reported overall orthotic function, ambulation, paretic limb and well-being as measured with the modified PEQ (Pröbsting et al., 2017)
Mobility	Patient feels limited or restricted in performing activities of daily living with the current locked KAFO or SCO	- Significant improvement in patient-reported safety and ease of performing ADLs (Pröbsting et al., 2017)
Mobility	Patient has difficulty descending slopes and stairs	 Significant improvement in the quality of slope and stair descent (Ruetz et al., 2023; Deems-Dluhy et al., 2021; Deems-Dluhy et al., 2017 [stairs only]; Schmalz et al., 2016 [slopes and stairs])
Mobility	Patient has physical limitations at work	- Significant reduction of 30% in Work Limitations Questionnaire WLQ-25 Physical score compared to locked KAFO or SCO (Ruetz et al., 2023)
Quality of life	Patient reports reduced quality of life while using a locked KAFO or SCO	 Significant improvement in 5/9 domains of SF-36 including a 50% improvement in Physical Functioning and 20% in Health Change compared to locked KAFO or SCO (Ruetz et al., 2023)
		 Significant improvement in quality of life as assessed by the OPUS and WHOQOL-BREF (Ruetz et al., 2023 [OPUS only]; Deems-Dluhy et al., 2021)

<u>References</u>

- Deems-Dluhy S, Hoppe-Ludwig S, Mummidisetti CK, Semik P, Heinemann AW, Jayaraman A. Microprocessor controlled knee ankle foot orthosis (KAFO) vs. stance control vs. locked KAFO: a randomized controlled trial. Arch Phys Med Rehabil 2021;102:233-44. doi: 10.1016/j.apmr.2020.08.013. Epub 2020 Sep 22. Download
- Deems-Dluhy S, Hoppe-Ludwig S, Mummidisetti CK, Lonini L, Shawen N, Jayaraman A. The impact of a MPO vs. SCO vs. locked KAFO on the functional ability of individuals with lower extremity weakness due to neurologic or orthopaedic injury or disease.
 16th ISPO World Congress, Cape Town, South Africa, May 8-11, 2017. <u>Download (paper 400, page 170)</u>
- Hobusch GM, Hasenöhrl T, Pieber K, Schmalz T, Dana S, Ambrozy C, Pohlig K, Dietl H, Crevenna R, von Skrbensky G, Hofer C, Auberger R, Windhager R. A novel mechatronics orthosis enables symmetrical gait kinematics in a patient with femoral nerve palsy a case study. Disabil Rehabil Assist Technol 2018 Feb;13(2):201-205. <u>Download</u>
- Pröbsting E, Kannenberg A, Zacharias B. Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis. Prosthet Orthot Int 2017 Feb;41(1):65-77. Epub 2016 Jul 10. <u>Download</u>
- Ruetz A, DiBello T, Toelle C, Hemmen B, Wening J, Weber E, Braatz F, Winkler T, Steinfeldt F, Umari M, Rupp R. A microprocessor stance and swing control orthosis improves balance, risk of falling, mobility, function, and quality of life of individuals dependent on a knee-ankle-foot orthosis for ambulation. Disability and Rehabilitation. 2023 Sep 26:1-4. doi: 10.1080/09638288.2023.2258342. <u>Download</u>

Schmalz T, Pröbsting E, Auberger R, Siewert G. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters. Prosthet Orthot Int 2016 Apr;40(2):277-86. Epub 2014 Sep 23. Download

Ottobock Reimbursement North America P 800 328 4058 F 800 230 3962 US: https://shop.ottobock.us CA: https://shop.ottobock.ca reimbursement911@ottobock.com